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Abstract

Computational biomechanical models have the potential to broaden our understanding and to 
aid the work of many practicing medical professionals. However, these models are only reliable, 
thus applicable and valuable, insofar as they are able to replicate a specific portion of reality. There-
fore, validation of computational models is indispensable. To ensure that our proposed 3D finite 
element head-neck model does bear meaningful resemblance to real cervical spines, we relied 
on all available relevant rotation-moment measurements. Previously proposed validation metrics 
were used to quantify model error and experimental uncertainties. These metrics may be adopted 
for a wide range of other applications as well. Our model was found to be adequate for the study 
of kinematical properties of the human cervical spine.
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IntroductIon

Numerical studies of the human cervical spine 
are of great importance for several reasons. 
One of the most important one is that compu-
tational models allow us to obtain quantitative 
data that otherwise would be impossible to be 
obtained. However, a well-known problem 
arises: the model’s ability to replicate realis-
tic results for a specific application has to be 
investigated otherwise the simulation model 
cannot be relied on. In short, validation is of 
paramount importance.

Although numerical studies of the cervical 
spine do begin with validation, the usually ap-
plied methods are far from comprehensive and 
adequately quantitative. In numerous stud-
ies1–14, the ranges of motion or the rotations 
at a given moment magnitude of the simula-
tion models were compared to that of in vitro 
and in silico models. In other words, merely 
singular data points were taken into account, 
not the whole rotation-moment relationship of 
each FSU.

https://doi.org/10.17489/biohun/2022/2/367
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Furthermore, the severely restricted use of em-
pirical observations is apparent. Most authors 
took advantage of only one or two sets of ex-
perimental kinematical data. In addition, the 
level of coincidence of the results are predom-
inantly qualitatively described. For instance, a 
common phrase, with different variations, is 
the following: “The results of the proposed mod-
el are in good agreement with empirical data.” 
Here, “good agreement” often lacks a clear, 
quantitative characterization in published 
works. As a result, assessing the improvement 
of biofidelity of subsequent models developed 
for similar applications is largely hindered.

A better approach to validation is the use of the 
two standard deviation wide range of experi-
mental mean.3–5,9,15 The corridor defined this 
way is conveniently established in view of the 
fact that standard deviation of observational 
data is almost universally provided. Besides, 
the corridor is more useful for a comprehen-
sive validation of FSUs of simulation models 
since not merely the end points but also the 
progression of the rotation-moment relation-
ship is taken into account. Hence, one can 
observe the behavior of the cervical segments 
in function of the applied moment. However, 
this approach allows us to assess biofidelity 
only in more of a qualitative sense as the ex-
tent of deviation from the observational mean 
might be described as either greater or less 
than the standard deviation. No further dis-
tinctions can be drawn numerically. Moreover, 
one cannot freely choose the confidence level 
at which the results are evaluated: only a static 
empirical corridor is given.

Besides, the uncertainty of the utilized exper-
imental data is rarely compared to the mod-
el error in a quantitative sense. This aspect 
of the available measurement data should be 
seen as all-important because the reliability of 
the validation ought to be assessed in light of 
the observational uncertainties. On the other 

hand, parametric studies provide some insight 
into the above mentioned problem.2,16–19 The 
work of Wei et al.20 and Bredbenner et al.21 
constitutes noteworthy exceptions with re-
gards to measuring finite element model er-
ror. In both studies, agreement with empirical 
data is quantified. Bredbenner et al. conducted 
a thorough stochastic analysis of both the ob-
servational data and the finite element results.

In the current study, our objective was to vali-
date a head-neck finite element model with all 
available rotation-moment measurements by 
quantifying model error and empirical uncer-
tainties using a relatively simple and intuitive 
method.
 
Methods

Finite element model

The finite element model that was previous-
ly developed and reported by Danka et al.22 
is hereby validated. Figure 1 shows the lateral 
view of the whole simulation model. It is im-

Figure 1. The previously developed finite 
element model of the human cervical spine22
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portant to emphasize that muscles were not 
taken into account when the model was vali-
dated. In addition, a few adjustments detailed 
below were made. For further information, 
refer to the work of Danka et al.22

Some of the material model parameters, 
shown in Table 1, has been changed compared 
to the previously reported values. For the sake 
of completeness, all material constants are pro-
vided. In addition, the mechanical behavior of 
ligaments was more realistically taken into ac-
count. Ligaments’ response due to tensile forc-
es may be divided into three region, namely: 
toe region, elastic region and the plastic or fail-
ure region. The first two stages were captured 

using a quasi-bilinear approach. Ligaments 
were modeled by using tension-only truss el-
ements. Besides, a fictive thermal load is ap-
plied so that the ligaments become compressed 
before applying moment loads. Hence, liga-
ment laxity is taken into account. The work of 
Laville et al.16 and Maurell et al.23 were used 
as starting points to approximate the level of 
pre-slackening of each ligament. The applied 
initial strains by using fictive thermal loads are 
located in Table 2.

Experimental datasets

The basis for empirical kinematical data was 
a meta-analysis study conducted by Zhang et 
al.24 For this meta-analysis, numerous mea-
surement results were collected and com-
piled. The compiled results that were used in 
the present work is located in the spreadsheet 
file of Supplementary data 2 in Appendix A of 
Zhang et al.’s paper. The inclusion criteria of 
our study were defined as follows. Datasets 
that (1) include at least one cervical FSU, (2) 
were produced with no follower load or com-
pressive force, and (3) provide at least two data 
points per loading directions were taken into 
account. If datasets were only available for uni-
lateral moments, in case of LB and AR, then 

Anatomical part
Young’s 
modulus 
[MPa]

Poisson’s 
ratio [-]

Anterior Atlantoaxial 
Membrane 8 0.3

Anterior Atlantooccipital 
Membrane 1 0.3

Alar Ligament 5 0.3
Anterior Longitudinal 
Ligament 54.5 0.39

Apical Odontoid Liga-
ment 20 0.3

Capsular Ligament 2 0.39
Interspinous Ligament 1.5 0.39
Intertransverse Ligament 2 0.39
Intervertebral Disk 3.4 0.39
Ligamentum Flavum 1.5 0.39
Muscle 1 0.4
Posterior Atlantoaxial 
Membrane 10 0.3

Posterior Atlantooccipital 
Membrane 20 0.3

Posterior Longitudinal 
Ligament 30 0.39

Bone 18000 0.4
Supraspinous Ligament 1.5 0.3
Transverse Ligament 20 0.3
Tectorial Membrane 10 0.3

Table 1. Applied material constants

Ligament Compressive 
strain [%]

Anterior Longitudinal Ligament -10
Posterior Longitudinal Ligament -10
Capsular Ligament -30
Interspinous Ligament -17
Supraspinous Ligament -10
Anterior Atlantooccipital Mem-
brane -10

Anterior Atlantoaxial Membrane -10
Posterior Atlantooccipital Mem-
brane -10

Posterior Atlantoaxial Membrane -10

Table 2. Applied initial compressive strain in 
ligaments
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Figure 2. Application of prescribed rotation in all three loading direction: flexion-extension (a), 
lateral bending (b), axial rotation (c)

the results were assumed to be the same due to 
contralateral moments with opposite sign.

Loads and boundary conditions

In order to validate the model, prescribed 
rotations were applied at the top of the skull 
(see Figure 2). In all simulations, fixed sup-
port boundary condition was defined at the 
bottom surface of the C7 vertebral body. Since 
the observational data are derived from in-
tact cervical spine specimens without muscle 
tissue, muscles in the finite element model 
were suppressed thus not taken into account.  
ANSYS’s25 Remote Point feature was utilized 
to measure the rotation. The Remote Points 
were placed onto the anterior surface of the 
vertebral bodies. In the post-processing stage, 
the Flexible Rotation result object provided the 
rotation values of each vertebra.

Validation metrics

In order to quantify the biofideliy of the finite 
element model, validation metrics proposed by 
Oberkampf and Barone26 were used. A brief 

description of each validation metric is pre-
sented below. For further details and rigorous 
derivation of each metric, refer to the work of 
Oberkampf and Barone.26

Here, a list of the quantities occurring in the 
following equations is provided:
 - M – applied moment,
 - Mu and Ml – maximum and minimum 

value of the applied moment, respectively,
 - θm(M) – relative rotations of a specific 

FSU in the proposed FE model,
 - θe(M) – mean relative rotations of human 

cervical spine samples for a specific FSU,
 - E(M) – estimated error function,  

E(M) = θm(M) - θe(M)
 - s(M) – standard deviation of mean rela-

tive rotations,
 - C – confidence level,
 - α – total area of both of the tails of the 

probability density function of Student’s 
t-distribution,

 - n(M) – number of independent dataset for 
a given moment magnitude,

 - v(M) – degree of freedom of the t-distri-
bution, v(M)=n(M)-1.

felhasználva az 5 paraméteres alak adódik (2). 

𝚿𝚿 = ∑ 𝝁𝝁𝒑𝒑
𝜶𝜶𝒑𝒑

(𝝀𝝀𝟏𝟏
𝜶𝜶𝒑𝒑 + 𝝀𝝀𝟐𝟐

𝜶𝜶𝒑𝒑 + 𝝀𝝀𝟑𝟑
𝜶𝜶𝒑𝒑 − 𝟑𝟑)𝑵𝑵

𝒑𝒑=𝟏𝟏       ( 1) 

𝚿𝚿 = 𝒄𝒄𝟏𝟏 ∗ (𝑰𝑰′
𝟏𝟏 − 𝟑𝟑) + 𝒄𝒄𝟐𝟐 ∗ (𝑰𝑰′

𝟐𝟐 − 𝟑𝟑) + 𝒄𝒄𝟑𝟑 ∗ (𝑰𝑰′
𝟏𝟏 − 𝟑𝟑)𝟐𝟐 + 𝒄𝒄𝟒𝟒 ∗ (𝑰𝑰′

𝟏𝟏 − 𝟑𝟑)(𝑰𝑰′
𝟐𝟐 − 𝟑𝟑) + 𝒄𝒄𝟓𝟓 ∗ (𝑰𝑰′

𝟐𝟐 − 𝟑𝟑)𝟐𝟐 
 ( 2) 

egyenletet kapunk, melyben  

𝑰𝑰′
𝟏𝟏 = 𝝀𝝀𝟏𝟏

𝟐𝟐 + 𝝀𝝀𝟐𝟐
𝟐𝟐 + 𝝀𝝀𝟑𝟑

𝟐𝟐       ( 3) 

𝑰𝑰′𝟐𝟐 = 𝝀𝝀𝟏𝟏
𝟐𝟐𝝀𝝀𝟐𝟐

𝟐𝟐 + 𝝀𝝀𝟐𝟐
𝟐𝟐𝝀𝝀𝟑𝟑

𝟐𝟐 + 𝝀𝝀𝟑𝟑
𝟐𝟐𝝀𝝀𝟏𝟏

𝟐𝟐     ( 4) 

és 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5 tapasztalati úton meghatározott anyagi konstansok.  

Egytengelyű húzás esetén 𝜆𝜆1 = 𝜆𝜆  és 𝜆𝜆2 = 𝜆𝜆3 = 1
√𝜆𝜆  . Ezt az energiafüggvény λ szerinti deriváltjába 

helyettesítve kapjuk meg a feszültség-nyúlás függvényt: 

𝛔𝛔𝟏𝟏𝟏𝟏 = 𝟐𝟐 ∗ 𝒄𝒄𝟏𝟏𝟎𝟎 ∗ (𝝀𝝀𝟐𝟐 − 𝟏𝟏
𝝀𝝀) + 𝟐𝟐 ∗ 𝒄𝒄𝟎𝟎𝟏𝟏 ∗ (𝝀𝝀 − 𝟏𝟏

𝝀𝝀𝟐𝟐) + 𝟒𝟒 ∗ 𝒄𝒄𝟐𝟐𝟎𝟎 ∗ (𝝀𝝀𝟒𝟒 − 𝟑𝟑 ∗ 𝝀𝝀𝟐𝟐 + 𝛌𝛌 − 𝟐𝟐
𝝀𝝀𝟐𝟐 + 𝟑𝟑

𝝀𝝀) + 𝟔𝟔 ∗
𝒄𝒄𝟏𝟏𝟏𝟏 ∗ (𝝀𝝀𝟑𝟑 − 𝝀𝝀𝟐𝟐 − 𝝀𝝀 − 𝟏𝟏

𝝀𝝀𝟑𝟑 + 𝟏𝟏
𝝀𝝀𝟐𝟐 + 𝟏𝟏

𝝀𝝀) + 𝟒𝟒 ∗ 𝒄𝒄𝟎𝟎𝟐𝟐 ∗ (𝟐𝟐 ∗ 𝝀𝝀𝟐𝟐 + 𝟑𝟑 ∗ 𝝀𝝀 − 𝟏𝟏
𝝀𝝀𝟒𝟒 + 𝟑𝟑

𝝀𝝀𝟐𝟐 − 𝟏𝟏
𝝀𝝀)  

ahol σ11 az első főnyúláshoz tartozó feszültség [MPa],  

𝑐𝑐𝑖𝑖 pedig ismét tapasztalati úton meghatározható anyagi konstansok. 

𝛔𝛔𝟏𝟏𝟏𝟏 = 2 ∗ 𝑐𝑐1 ∗ (𝜆𝜆2 − 1
𝜆𝜆) + 2 ∗ 𝑐𝑐2 ∗ (𝜆𝜆 − 1

𝜆𝜆2) + 6 ∗ 𝑐𝑐4 ∗ (𝜆𝜆3 − 𝜆𝜆2 − 𝜆𝜆 − 1
𝜆𝜆3 + 1

𝜆𝜆2 + 1
𝜆𝜆)       

(5) 

A c tagok meghatározásának módját az egyszerűség kedvéért ezen a háromváltozós alakon 
mutatom be. A diagramban ábrázolt pontjaink segítségével alkalmazzuk a legkisebb négyzetek 
módszerét:  

𝑒𝑒𝑖𝑖 = 2 ∗ 𝑐𝑐1 ∗ (𝜆𝜆2 − 1
𝜆𝜆) + 2 ∗ 𝑐𝑐2 ∗ (𝜆𝜆 − 1

𝜆𝜆2) + 6 ∗ 𝑐𝑐4 ∗ (𝜆𝜆3 − 𝜆𝜆2 − 𝜆𝜆 − 1
𝜆𝜆3 + 1

𝜆𝜆2 + 1
𝜆𝜆) − 𝑠𝑠𝑖𝑖   

       ( 6) 

F = Σ (2 ∗ 𝑐𝑐1 ∗ (𝜆𝜆2 − 1
𝜆𝜆) + 2 ∗ 𝑐𝑐2 ∗ (𝜆𝜆 − 1

𝜆𝜆2) + 6 ∗ 𝑐𝑐4 ∗ (𝜆𝜆3 − 𝜆𝜆2 − 𝜆𝜆 − 1
𝜆𝜆3 + 1

𝜆𝜆2 + 1
𝜆𝜆) −

𝑠𝑠𝑖𝑖)
2

    ( 7) 

ahol 𝑒𝑒𝑖𝑖 a hibák, 

𝜀𝜀 = ∆𝑙𝑙
𝑙𝑙                ( 8) 

𝜎𝜎 = 𝐹𝐹
𝐴𝐴               ( 9) 
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There are some basic mathematical restric-
tions that has to be respected in order to use 
the validation metrics introduced below. Both 
θm and θe are required to be functions of M, 
i.e., one and only one relative rotation value 
can be assigned to each value of M. In addi-
tion, the value of θe is not allowed to be 0 oth-
erwise division by 0 occurs.

The first validation metric is the so called 
average relative error metric (AREM), which 
characterizes the absolute relative difference 
between measurements and the correspond-
ing results of the computational model. This 
validation metric is calculated as follows (1):

The average relative confidence indicator 
(ARCI) is defined as the average magnitude of 
the half-width of the confidence interval over 
the range of the applied moment (2):

The maximum relative error metric (MREM) 
is simply the maximum value of the absolute 
relative error over the range of the applied mo-
ment (3):

Let 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
(𝐴𝐴𝑢𝑢 −𝐴𝐴𝑙𝑙)

∫ |𝜃𝜃𝑚𝑚
(𝐴𝐴) − �̅�𝜃𝑒𝑒(𝐴𝐴)
�̅�𝜃𝑒𝑒(𝐴𝐴) |

𝑀𝑀𝑢𝑢

𝑀𝑀𝑙𝑙

𝑑𝑑𝐴𝐴. (1) 

 
The average relative confidence indicator (ARCI) is defined as the average magnitude of 

the half-width of the confidence interval over the range of the applied moment: 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
(𝐴𝐴𝑢𝑢 −𝐴𝐴𝑙𝑙)

∫
𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

| 𝑠𝑠
(𝐴𝐴)

�̅�𝜃𝑒𝑒(𝐴𝐴)|
𝑀𝑀𝑢𝑢

𝑀𝑀𝑙𝑙

𝑑𝑑𝐴𝐴. (2) 

 
The maximum relative error metric (MREM) is simply the maximum value of the absolute 

relative error over the range of the applied moment: 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = max
𝑀𝑀𝑙𝑙≤𝑀𝑀≤𝑀𝑀𝑢𝑢

|𝜃𝜃𝑚𝑚
(𝐴𝐴) − �̅�𝜃𝑒𝑒(𝐴𝐴)
�̅�𝜃𝑒𝑒(𝐴𝐴) |. (3) 

 
Let �̂�𝐴 denote the moment magnitude at which MREM occurs. Then the maximum 

relative confidence interval (MRCI) is the half of the relative confidence interval at �̂�𝐴: 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑡𝑡𝛼𝛼/2,𝑣𝑣(�̂�𝐴)
√𝑛𝑛(�̂�𝐴)

| 𝑠𝑠(�̂�𝐴)
�̅�𝜃𝑒𝑒(�̂�𝐴)|. (4) 

 
Moreover, validation metrics that are continuous functions of 𝐴𝐴 are introduced. The 

rationale behind the application of these additional metrics is the need to compare the 
empirical and finite element results more thoroughly. The confidence interval around the 
experimental mean (Eq. 5) and around the estimated mean (Eq. 6), the relative confidence 
interval around the absolute relative estimated error (Eq. 7), respectively, are defined as 
follows: 

 

 𝐴𝐴𝑒𝑒(𝐴𝐴) = (�̅�𝜃𝑒𝑒(𝐴𝐴) − 𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴) 𝑠𝑠(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

, �̅�𝜃𝑒𝑒(𝐴𝐴) + 𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴) 𝑠𝑠(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

), (5) 

 

 𝐴𝐴�̃�𝐸(𝐴𝐴) = (�̃�𝐴(𝐴𝐴) − 𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴) 𝑠𝑠(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

, �̃�𝐴(𝐴𝐴) + 𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴) 𝑠𝑠(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

), (6) 

 

 𝐴𝐴�̃�𝐸,𝑟𝑟𝑒𝑒𝑙𝑙(𝐴𝐴) = (| �̃�𝐴(𝐴𝐴)
�̅�𝜃𝑒𝑒(𝐴𝐴)| −

𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

| 𝑠𝑠
(𝐴𝐴)

�̅�𝜃𝑒𝑒(𝐴𝐴)| , |
�̃�𝐴(𝐴𝐴)
�̅�𝜃𝑒𝑒(𝐴𝐴)| +

𝑡𝑡𝛼𝛼/2,𝑣𝑣(𝐴𝐴)
√𝑛𝑛(𝐴𝐴)

| 𝑠𝑠
(𝐴𝐴)

�̅�𝜃𝑒𝑒(𝐴𝐴)|). (7) 

 
 

 denote the moment magnitude at which 
MREM occurs. Then the maximum relative 
confidence interval (MRCI) is the half of the 
relative confidence interval at 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
(𝐴𝐴𝑢𝑢 −𝐴𝐴𝑙𝑙)

∫ |𝜃𝜃𝑚𝑚
(𝐴𝐴) − �̅�𝜃𝑒𝑒(𝐴𝐴)
�̅�𝜃𝑒𝑒(𝐴𝐴) |

𝑀𝑀𝑢𝑢

𝑀𝑀𝑙𝑙

𝑑𝑑𝐴𝐴. (1) 

 
The average relative confidence indicator (ARCI) is defined as the average magnitude of 
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 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑡𝑡𝛼𝛼/2,𝑣𝑣(�̂�𝐴)
√𝑛𝑛(�̂�𝐴)

| 𝑠𝑠(�̂�𝐴)
�̅�𝜃𝑒𝑒(�̂�𝐴)|. (4) 

 
Moreover, validation metrics that are continuous functions of 𝐴𝐴 are introduced. The 

rationale behind the application of these additional metrics is the need to compare the 
empirical and finite element results more thoroughly. The confidence interval around the 
experimental mean (Eq. 5) and around the estimated mean (Eq. 6), the relative confidence 
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not satisfy the criteria above at all input val-
ues, that is, more than one relative rotation 
value is assigned to certain moment magni-
tudes. In observational studies, the end point 
values of the neutral zone were assigned to  
M = 0 Nm moment. Thereby, two distinct rel-
ative rotation values are designated to one M 
instead of one. To address this issue, neutral 
zone end point angulations were assigned to  
M = +0.02 Nm and M = -0.02 Nm. These 
moment magnitudes are close enough to 0 
from a practical point of view but not too close 
from a numerical perspective.

In addition, no initial angulation was assumed 
therefore θ = 0° was assigned to M = 0 Nm 
in case of each motion segment. However, this 
presumption poses another problem: when 
calculating some of the above mentioned met-
rics, one must divide by 0. This issue is resolved 
by proposing that the relative error and rela-
tive confidence interval is 0% at M = 0 Nm. 
With these assumptions and preprocessing,  
C = 95% confidence level was chosen, thus  
α = 5%, and the validation metrics were cal-
culated interpolating between data points 
of each empirical and finite element rota-
tion-moment result set.

results

Utilized empirical datasets

Altogether 9 observational studies were found 
to meet the inclusion criteria. Each report 
provides kinematical data of various cervical 
spine segments, therefore it is useful to show 
the distribution of available experimental data 
in Figure 3 and Table 3. Since relatively few 
and varying number of datasets of FSUs are 
available in different loading directions, it 
follows that the length of the CI is largely in-
fluenced by the number of available datasets. 
Upper cervical spine segments in FE have the 
largest number of empirical datasets while 

these segments in LB and C2-C3 in FE have 
the least amount of observational datasets. 
The lower cervical spine is balanced in all free 
loading directions in this respect. It is worth 
noting that the only empirical study that re-
ports on rotation-moment data of the six FSUs 
in all three loading direction was conducted by 
Panjabi et al.27

Global validation metric results

Results pertaining to global metrics are sum-
marized in Table 4 and in Figure 4. One may 
observe that, on average, the magnitude of 
relative error is larger in case of LB than 
that of FE and AR. The smallest and larg-
est average relative error is associated with 
FE of C0-C1, being 12.5%±81.4% with 95% 
confidence and with LB of C1-C2, being 
77.3%±125.9% with 95% confidence, respec-
tively. The smallest and largest maximum 
relative error is related to AR of C1-C2 with 
58.2%±100.3% with 95% confidence and 
to LB of C1-C2, being 156.8%±85.8% with 
95% confidence.

One of the most prominent patterns in the 
results is that the lengths of relative confi-

Figure 3. Number of used independent 
datasets for each FSU and for each loading 
direction
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Motion segment FE LB AR
C0C1 Panjabi et al.27

Panjabi et al.28

Kettler et al.29

Nightingale et al.30

Nightingale et al.31

Panjabi et al.27

Panjabi et al.28
Panjabi et al.27

Panjabi et al.28

Kettler et al.29

C1C2 Panjabi et al.27

Panjabi et al.28

Kettler et al.29

Nightingale et al.30

Panjabi et al.27

Panjabi et al.28
Panjabi et al.27

Panjabi et al.28

Kettler et al.29

C2C3 Panjabi et al.27

Wheeldon et al.32
Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

C3C4 Panjabi et al.27

Nightingale et al.30

Wheeldon et al.32

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

C4C5 Panjabi et al.27

Nightingale et al.31

Wheeldon et al.32

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

C5C6 Panjabi et al.27

Nightingale et al.30

Wheeldon et al.32

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

C6C7 Panjabi et al.27

Nightingale et al.31

Wheeldon et al.32

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

Panjabi et al.27

Yoganandan et al.33

Yoganandan et al.34

Bozkus et al.35

Table 3. Utilized empirical datasets for each motion segment and for each loading direction

Motion type Motion segment AREM ARCI MREM MRCI
FE C0-C1 12.5% 81.4% 83.1% 444.5%

C1-C2 22.4% 69.2% 63.3% 111.5%
C2-C3 35.1% 316.4% 95.2% 846.9%
C3-C4 27.5% 108.6% 101.9% 312.8%
C4-C5 21.1% 104.3% 115.2% 205.8%
C5-C6 40.3% 88.8% 118.0% 195.6%
C6-C7 17.6% 76.7% 126.2% 200.7%

LB C0-C1 39.4% 179.2% 61.8% 267.5%
C1-C2 77.3% 125.9% 156.8% 85.8%
C2-C3 44.8% 145.5% 97.5% 92.3%
C3-C4 34.7% 80.4% 99.1% 60.6%
C4-C5 54.1% 78.7% 100.8% 104.9%
C5-C6 34.8% 69.1% 103.0% 102.3%
C6-C7 43.5% 111.9% 103.9% 117.8%

AR C0-C1 40.4% 140.8% 86.4% 94.0%
C1-C2 24.8% 111.4% 58.2% 100.3%
C2-C3 24.1% 75.9% 86.8% 37.2%
C3-C4 33.3% 109.2% 90.9% 97.6%
C4-C5 45.5% 80.1% 91.3% 106.3%
C5-C6 23.2% 97.9% 84.7% 113.7%
C6-C7 19.9% 96.8% 79.4% 121.1%

Table 4. Global validation metric results for each loading direction and motion segment
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dence intervals are considerably greater than 
the magnitude of the corresponding relative 
error. The smallest (37.2%) and largest MRCI 
(846.9%) is accompanied to the case of AR and 
FE of C2-C3, respectively. Upon inspection 
of relative CI in the function of moment, rel-
ative errors came to be largest near the initial 
position and at the ends of rotation-moment 
curves.

Continuous confidence intervals, error and 
relative error

In this section, results of FSUs having the 
smallest (Figure 5) and largest (Figure 6) aver-
age relative error are detailed. The agreement 
between rotation-moment behavior of C0-C1 
due to FE with corresponding empirical re-
sults is the greatest. Both ends of the neutral 
zone are practically coincident with the ob-
servational mean. The biofidelity in flexion is 
excellent as well as in extension until -1 Nm 
moment magnitude. The measurements sig-
nal a stiffening behavior while the finite ele-
ment model response remains mostly linear. 
However, not only the magnitude of error and 
relative error rises but the length of the cor-
responding confidence interval does as well. 
This pattern is typical of numerous result sets 
as well as the fact that a local or even the global 
maximum relative error occurs near the initial 
position.

As far as the worst performing FSU is concerned 
(Figure 6), most of the average error stems from 
the fact that the one of the ends of neutral zone 
is not captured precisely. Regardless, the slope 
of the rotation-moment curve of the FEM is 
roughly the same as that of the experimental 
mean in the elastic zone. Furthermore, the 
FEM rotation-moment curve is not entirely out 
of the CIs although the CIs were determined by 
merely two set of observational measurements 
(Figure 3), meaning that they prone to change 
significantly if newer observational data would 
be added as input to the calculation of valida-
tion metrics. For further details on continuous 
validation metrics of other FSUs, please refer to 
the supplementary materials.

dIscussIon

Novelties

To the authors’ knowledge, this is the first 
study that not only quantified computational 
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Figure 4. Global validation metrics with error 
bars showing the corresponding ARCI and 
MRCI. The graphs show the results derived 
from flexion-extension (a), lateral bending (b) 
and axial rotation (c) loading directions
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Figure 5. Continuous validation metrics per-
taining to FE of C0-C1: experimental mean 
with confidence interval compared to FEM 
result (a), estimated error with confidence in-
terval (b), absolute relative error with relative 
confidence interval (c)
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Figure 6. Continuous validation metrics per-
taining to LB of C1-C2: experimental mean 
with confidence intervals compared to FEM 
results (a), estimated error with confidence 
intervals (b), absolute relative errors with 
relative confidence intervals (c)
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model error of the cervical spine but reports 
on the structure of uncertainty of the rota-
tion-moment experimental data as well. This 
information is of great importance since ro-
tation-moment data are widely used for vali-
dating computational spine models. Moreover, 
the stochastic analysis was carried out taking 
advantage of all available rotation-moment 
measurements, which means that results of 9 
studies were utilized.

Another novelty is the use of a specific set of 
validation metrics that, as far as the authors are 
aware, has not been applied to human cervical 
spine computational models before. Howev-
er, these metrics provide a relatively easy and 
intuitive use of the available empirical data. 
Besides, the presented validation metrics al-
low us in the future to compare different finite 
element models of the cervical spine. Incorpo-
rating future measurements and reassessing 
model performance is also possible with little 
effort. Consequently, it provides a consistent 
and quantitative framework. The presented 
validation metrics may also be successfully ap-
plied in a wide variety of validation problems. 
Although with moderate limitations, even 
comparisons between computational models 
of different anatomical parts are also possible 
with regards to biofidelity.

Limitations

One major drawback of the present study is 
the dataset itself, which the stochastic analysis 
was based on. Firstly, the number of the em-
pirical studies of the cervical spine is relatively 
few. Ideally, for each FSU and for each load-
ing direction at least 15-30 observational rota-
tion-moment datasets is needed to reduce the 
confidence intervals significantly. Secondly, 
multi-segment cervical spine rotation-moment 
data are reported mostly instead of uni-seg-
ment data. This led Zhang et al.24 to make ap-
proximations in order to acquire kinematical 

data for individual spinal units. Clearly, this is 
one additional source of uncertainty.

It is well-established that cervical motions are 
complex.36 However, there is an even greater 
scarcity of data regarding the coupled motion 
patterns of the cervical spine. To the authors’ 
knowledge, the only study that comprehen-
sively reports data of such kind was conducted 
by Panjabi et al.27 One improvement would 
be to validate the model not only against 
principal motions but also against secondary 
motions after sufficient amount of such data 
becomes available.

Another obvious weakness of this study is that 
the measurements were conducted mostly on 
elderly cadaveric spinal units. The proposed 
finite element model, on the other hand, was 
developed based on CT of a young, 21-year-
old male. Furthermore, different magnitude 
of ultimate moments is applied in different 
experimental studies. The larger the ultimate 
moment is, the fewer sets of observational data 
there are. This is a major component of why 
the empirical uncertainties rise at both ends 
of the rotation-moment curve. For this reason, 
more measurements are needed. Another de-
ficiency is that the muscles are not validated. 
There is no available data that considers the 
whole head-neck complex and provides rota-
tion-moment curves.

Conclusion

In this research paper, a previously developed 
finite element model of the human cervical 
spine22 was adjusted and validated. Both mod-
el error and empirical uncertainties with 95% 
confidence were quantified. The proposed fi-
nite element model was found to be adequate 
for kinematical applications such as range of 
motion comparisons of different surgical pro-
cedures or kinematical analysis of cervical 
spine injuries.
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