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Numerical hemodynamic simulations can improve the diagnosis and treatment of cardiovascu-
lar-related diseases, decreasing their leading mortality. The paper presents the improvement of
the hemodynamic solver, First Blood. While the method of characteristics (MOC) handles the
boundary conditions, the MacCormack scheme and the MOC are also applied to solve the mass
and momentum balance equations in the inner points. The Olufsen model replaces the Poynt-
ing-Thomson model to ensure the accurate modelling of the arterial wall behaviour. The study
highlights the numerical superiority of the MacCormack scheme over the MOC both in accuracy
and computational efficiency. The simulation of a cardiac cycle takes less than 9 seconds, while

the discretisation error in the results is low. Finally, simulation results are presented to validate the

physiological relevance of the solver and the applied cardiovascular model.
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INTRODUCTION

Cardiovascular-related ~ diseases are still
among the leading causes of death in modern
societies. Developing mathematical models to
describe the human cardiovascular system is
inevitable in increasing the quality of modern
medicine. Since patient-specific treatments
are spreading in general medicine, the engi-
neering modelling can improve its accuracy
with patient-specific models. This paper fol-
lows the idea of low-dimensional modelling,
handling the entire cardiovascular network.

A novel hemodynamic solver, First Blood, has
been recently developed, applying the method
of characteristics (MOC).” Although the solv-
er is both computationally efficient and accu-
rate, there is a remarkable limitation: it can-
not handle varying nominal diameters, i.c.,
the model cannot contain tapered artery ves-
sels. The cerebral arteries, mainly the internal
and external carotid arteries, have significant
changes in their nominal diameter along the
vessel. Since a varying nominal diameter
highly influences the speed of the pulse wave
propagation, significant modifications and
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numerical improvements were necessary to
overcome the issue. This paper aims at pre-
senting the applied numerical schemes and a
modified version of the MOC, while keeping
the accuracy and computational efficiency.

METHODS

The initial equations are the mass (/) and
momentum (2) balances for incompressible

fluid and a varying cross-section area””:
A =0, (1)

L Lop B )
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A is the cross-section area, v the velocity, p the
density, p the pressure, u the dynamic viscosity,
x the spatial coordinate and # is the time. Since
there are three unknown field variables, A(x,z),
p(xt) and v(x,2), a third independent equation
is necessary. The former version of our mod-
ell used the viscoelastic Poynting-Thomson
model but, its three independent parameters
(two Young moduli and one damping factor)
for each vessel are difficult to calibrate due to
the lack of detailed measurement data. The
Olufsen model overcomes this issue since
there are only three parameters for the entire
model. The cross-section area and pressure re-
lation defines the artery wall mechanics using
the Olufsen model
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where the A(x) is the nominal cross-section
area, Vp, the Poisson coefficient. Moreover, the
fraction with the elastic modulus E and the
geometrical parameters (wall thickness 4, and

the nominal radius 7)) can be approximated
such as

E_h = klekzro + kg, )
To

where £ (i=1,2,3) are constants from fitting the
curve to measurement points.” The F variable
in (3) is introduced to simplify the calcula-
tions. The model is convenient, since it does
not need additional data, all the parameters
are available. Only the nominal cross-section
area is necessary.

The MacCormack scheme provides a sec-
ond-order accurate solution for the partial
differential equation system (PDE)*°, (I-3).
However, the boundary conditions need the
conversion of the PDE to ordinary differential
equations (ODEs) with the MOC. The MOC
creates the opportunity for defining any gen-
eral boundary condition, e.g., prescribed field
variable or connection with the lumped mod-

els.” Rearranging (1-2), we get
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where
v=[4] (6)
and
v A
MU) =|10p ()
p 0A

Since the cross-section area might change spa-
tially, i.e., p=p(A(x,2), A,(x), F(x)), the source
term is
S(x,t,U) =
(8)

0
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The eigenvalue of matrix M determines the

Adp
— 9
a P )

while the transformation matrix 7 can be built

wave speed

up using the eigenvectors. Multiplying (5) from
the left with 7" and using T"M=AT", where A
is diagonal with the eigenvalues, we get

au au
T_IEJFAT_IE: T_15. (10)

Introducing T/ =0W/0U leads, i.e.,

ow au aw ou _ g (11)

v ot T AU ax

which seems a directional derivative and W
the Riemann invariant; however, the nominal
cross-section area changes along the vessel,
(OW/oU)(0U/0x)=(0W/ox)+C, where C is a

function of x. Finally,

DW
— =T"1s—AC, (12)
Dt

where D represents substantial derivatives
along the lines v=*a. The simple explicit Euler
scheme transforms the differential equations
into algebraic ones. This formula is also used
to solve the equations in the inner computa-
tional points. The algebraic equations are only
valid along the characteristic lines, and since
the pulse wave velocity changes in time and
space, linear interpolation is inevitable.

Once the Riemann invariants W have been deter-
mined, C can be calculated as well. To find the in-
variants, we need the definite integral of T from
a stress-free v, 4, state to an arbitrary point, i.c.,

1 2JAF [ L
W1,2=E(U—Vo)i\/%<Aé—A%>. (13)

where the value of F is determined via (3)with
geometric and material parameters. The direct
spatial dependence of the invariant determines

the correction C, as

Coo = 7| [P0 (75— 45) 2
12— 0 ox
(14)
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Literature provides data to build up the mod-
el for the entire cardiovascular network of the

human body.*’

Figure 1 depicts the model
with one-dimensional (1D) arteries, zero-di-
mensional (0D) heart, pulmonary circulation,
and peripheries. While a simple RCR (resis-
tor-capacitor-resistor) circuit models the pul-
monary circulation, the 4 stage RCL circuits
mimic the behaviour of the small arteries, ar-
terioles, venules, and small veins. The system
is not fully closed due to computational rea-
sons. Calculating multiple small 0D circuits
is significantly more efficient than handling
them as one whole; thus, the network is cut
up at the large veins. The parameters are set
using literature data to obtain physiologically
relevant output quantities.’

RESULTS & DISCUSSION

This chapter presents the results achieved
by First Blood with the improved numerical
schemes. Simulation results are presented, and
the MacCormack scheme and the MOC are
compared in terms of accuracy and computa-
tional efficiency. The difference is only present
at the update of the inner grid points, and the
boundary conditions are handled with MOC
in both cases. First, four different meshes are
created and run to determine the necessary
number of inner grid points, monitoring the
computational time in seconds. Figure 2 repre-
sents the results for the MacCormack scheme
(grey) and the explicit Euler with the MOC
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Figure 1. lllustration of the model of the entire cardiovascular network. Red lines indicate the
1D arteries, while grey circuits the peripheries, the heart, and the pulmonary circulation

(red). Second-order polynomials fit both data
points accurately. Moreover, the MacCormack
scheme tends to have a lower computational
time as the mesh size increases.

Besides the computational time, 11 physiologi-
cally relevant diagnostic values are monitored:
three diastolic, three systolic pressures from
the radial, the aortic and the carotid arteries,
four different pulse wave velocities, and the
cardiac output. Figure 3 presents the results
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Figure 2. Simulation time as a function of
the mesh size (number of grid points). MOC
represents the explicit Euler scheme with the
method of characteristics

as a function of the mesh size, the red being
the MacCormack, and the grey the method
of characteristics. Power-law functions fit the
data points accurately. All plots indicate the
accuracy benefit of the MacCormack meth-
od, as even the second smallest mesh could
achieve sufficiently accurate results, while
the MOC needs the largest mesh to be four
times larger. The MacCormack method is sec-
ond-order both in time and space, explaining
its advantages.

Finally, since the accuracy-efficiency analysis
highlighted the advantages of the MacCor-
mack method, its simulation results are pre-
sented. Figure 4 depicts simulation results with
the pressure and the volumetric flow rate from
different locations of the human body. The
aortic pressure might be the most important
in terms of diagnosis. Both the range and the
signal shape are physiologically relevant. Also,
the aortic flow rate indicates the cardiac out-
put. The increment of the ventricular pressure
opens the aortic valve, introducing a high flow
rate to the aorta. However, once the elastance
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Figure 3. Physiologically relevant diagnostic outputs from both simulations using the
MacCormack scheme and the method of characteristics, indicating the superiority of the
former
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computational points. The study highlighted
the superiority of the MacCormack scheme
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both in terms of accuracy and CPU time. A

cardiac cycle requires only 9 seconds, while

the discretisation error remains low. Finally, . .
Figure 4. Pressure (p) and volumetric flow
; __ i rate (q) results from five different locations
1cal output quantmes, such as aortic pressure, Of the CardioVaSCUlar network Using the

cardiac output or pulse wave velocity. MacCormack scheme

simulation results showed relevant physiolog-
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